Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Metal halide perovskites based on formamidinium (FA), or FA‐rich compositions have shown great promise for high‐performance photovoltaics. A deeper understanding of the impact of ambient conditions (e.g., moisture, oxygen, and illumination) on the possible reactions of FA‐based perovskite films and their processing sensitivities has become critical for further advances toward commercialization. Herein, we investigate reactions that take place on the surface of the FA0.7Cs0.3, mixed Br/I wide bandgap perovskite thin films in the presence of humid air and ambient illumination. The treatment forms a surface layer containing O, OH, and N‐based anions. We propose the latter originates from formamidine trapped at the perovskite/oxide interface reacting further to cyanide and/or formamidinate—an understudied class of pseudohalides that bind to Pb. Optimized treatment conditions improve photoluminescence quantum yield owing to both reduced surface recombination velocity and increased bulk carrier lifetime. The corresponding perovskite solar cells also exhibit improved performance. Identifying these reactions opens possibilities for better utilizing cyanide and amidinate ligands, species that may be expected during vapor processing of FA‐based perovskites. Our work also provides new insights into the self‐healing or self‐passivating of MA‐free perovskite compositions where FA and iodide damage could be partially offset by advantageous reaction byproducts. imagemore » « lessFree, publicly-accessible full text available February 1, 2026
- 
            Self-discharge and chemically induced mechanical effects degrade calendar and cycle life in intercalation-based electrochromic and electrochemical energy storage devices. In rechargeable lithium-ion batteries, self-discharge in cathodes causes voltage and capacity loss over time. The prevailing self-discharge model centers on the diffusion of lithium ions from the electrolyte into the cathode. We demonstrate an alternative pathway, where hydrogenation of layered transition metal oxide cathodes induces self-discharge through hydrogen transfer from carbonate solvents to delithiated oxides. In self-discharged cathodes, we further observe opposing proton and lithium ion concentration gradients, which contribute to chemical and structural heterogeneities within delithiated cathodes, accelerating degradation. Hydrogenation occurring in delithiated cathodes may affect the chemo-mechanical coupling of layered cathodes as well as the calendar life of lithium-ion batteries.more » « less
- 
            null (Ed.)Electronic technologies critically rely on the ability to broadly dope the active semiconductor; yet the promising class of halide perovskite semiconductors so far does not allow for significant control over carrier type (p- or n-) and density. The molecular doping approach offers important opportunities for generating free carriers through charge transfer. In this work, we demonstrate effective p-doping of MAPb 0.5 Sn 0.5 I 3 films using the molecular dopant F4TCNQ as a grain boundary coating, offering a conductivity and hole density tuning range of up to five orders of magnitude, associated with a 190 meV Fermi level down-shift. While charge transfer between MAPb 0.5 Sn 0.5 I 3 and F4TCNQ appears efficient, dopant ionization decreases with increasing Pb content, highlighting the need for appropriate energy offset between host and dopant molecule. Finally, we show that electrical p-doping impacts the perovskite optoelectronic properties, with a hole recombination lifetime increase of over one order of magnitude, suggesting passivation of deep traps.more » « less
- 
            null (Ed.)Long-lived photon-stimulated conductance changes in solid-state materials can enable optical memory and brain-inspired neuromorphic information processing. It remains challenging to realize optical switching with low-energy consumption, and new mechanisms and design principles giving rise to persistent photoconductivity (PPC) can help overcome an important technological hurdle. Here, we demonstrate versatile heterojunctions between metal-halide perovskite nanocrystals and semiconducting single-walled carbon nanotubes that enable room-temperature, long-lived (thousands of seconds), writable, and erasable PPC. Optical switching and basic neuromorphic functions can be stimulated at low operating voltages with femto- to pico-joule energies per spiking event, and detailed analysis demonstrates that PPC in this nanoscale interface arises from field-assisted control of ion migration within the nanocrystal array. Contactless optical measurements also suggest these systems as potential candidates for photonic synapses that are stimulated and read in the optical domain. The tunability of PPC shown here holds promise for neuromorphic computing and other technologies that use optical memory.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
